Page 2 of 3   <       >

Inventing Our Evolution

It was in 1965 that Gordon E. Moore, director of Fairchild's Research and Development Laboratories, noted, in an article for the 35th-anniversary issue of Electronics magazine, that the complexity of "minimum cost semiconductor components" had been doubling every year since the first prototype microchip was produced six years before. And he predicted this doubling would continue every year for the next 10 years.

Carver Mead, a professor at the California Institute of Technology, would come to christen this claim "Moore's Law."

Over time it has been modified. As the core faith of the entire global computer industry, it is now stated this way: The power of information technology will double every 18 months, for as far as the eye can see.

Sure enough, in 2002, the 27th doubling occurred right on schedule with a billion-transistor chip. A doubling is an amazing thing. It means the next step is as great as all the previous steps put together. Twenty-seven consecutive doublings of anything man-made, an increase of well over 100 million times-- especially in so short a period -- is unprecedented in human history.

This is exponential change. It's a curve that goes straight up.

Optimists say that culture and values can control the impact of these advances.

"You have to make a distinction between the science and the technological applications," says Francis Fukuyama, a member of the President's Council on Bioethics and director of the Human Biotechnology Governance Project. "It's probably true that in terms of the basic science, it's pretty hard to stop that. It's not one guy in a laboratory somewhere. But not everything that is scientifically possible will actually be technologically implemented and used on a large scale. In the case of human cloning, there's an abstract possibility that people will want to do that, but the number of people who are going to want to take the risk is going to be awfully small."

Taboos will play an important role, Fukuyama says. "We could really speed up the whole process of drug improvement if we did not have all the rules on human experimentation. If companies were allowed to use clinical trials in Third World countries, paying a lot of poor people to take risks that you wouldn't take in a developed country, we could speed up technology quickly. But because of the Holocaust -- "

Fukuyama thinks the school of hard knocks will slow down a lot of attempts. "People may in the abstract say that they're willing to take that risk. But the moment you have a deformed baby born as a result of someone trying to do some genetic modification, I think there will be a really big backlash against it."

Today, nonetheless, we are surrounded by the practical effects of this curve of exponential technological change. IBM this year fired up a new machine called Blue Gene/L. It is ultimately expected to be 1,000 times as powerful as Deep Blue, the machine that beat world chess champion Garry Kasparov in 1997. "If this computer unlocks the mystery of how proteins fold, it will be an important milestone in the future of medicine and health care," said Paul M. Horn, senior vice president of IBM Research, when the project was announced.

Proteins control all cellular processes in the body. They fold into highly complex, three-dimensional shapes that determine their function. Even the slightest change in the folding process can turn a desirable protein into an agent of disease. Blue Gene/L is intended to investigate how. Thus, breakthroughs in computers today are creating breakthroughs in biology. "One day, you're going to be able to walk into a doctor's office and have a computer analyze a tissue sample, identify the pathogen that ails you, and then instantly prescribe a treatment best suited to your specific illness and individual genetic makeup," Horn said.

What's remarkable, then, is not this computer's speed but our ability to use it to open new vistas in entirely different fields -- in this case, the ability to change how our bodies work at the most basic level. This is possible because at a thousand trillion operations per second, this computer might have something approaching the raw processing power of the human brain.


<       2        >

© 2005 The Washington Post Company