Page 3 of 3   <      

Inventing Our Evolution

Nathan Myhrvold, the former technology chief of Microsoft, points out that it cost $12 billion to sequence the first human genome. You will soon be able to get your own done for $10, he expects.

If an implant in a paralyzed man's head can read his thoughts, if genes can be manipulated into better versions of themselves, the line between the engineered and the born begins to blur.

For example, in Silicon Valley, there is a biotech company called Rinat Neuroscience. DARPA provided critical early funding for its "pain vaccine," a substance designed to block intense pain in less than 10 seconds. Its effects last for 30 days. Tests show it doesn't stifle reactions. If you touch a hot stove, your hand will still automatically jerk away. But after that, the torment is greatly reduced. The product works on the inflammatory response that is responsible for the majority of subacute pain. If you get shot, you feel the bullet, but after that, the inflammation and swelling that trigger agony are substantially reduced. The company is deep into animal testing, is preparing reports for scientific conferences, and has now attracted venture capital funding.

Another DARPA program, originally christened Regenesis, started with the observation that if you cut off the tail of a tadpole, the tail will regrow. If you cut off an appendage of an adult frog, however, it won't, because certain genetic signals have been switched off. This process is carried out by a mass of undifferentiated cells called a blastema, also called a regeneration bud. The bud has the capability to develop into an organ or an appendage, if it gets the right signals. Early results in mice indicate that such blastemas might be generated in humans. The program, now called Restorative Injury Repair, is aimed at allowing regrowth of a blown-off hand or a breast removed in a mastectomy. (Instances of amputated fingertips regenerating in children under 12 have long been noted in scientific journals.) "We had it; we lost it; we need to find it again" was Regenesis's original slogan.

Snooze and Lose?

There are three groups of people usually attracted to any new enhancement. In order, they are the sick, the otherwise healthy with a critical need, and the enterprising. This became immediately obvious when a drug called modafinil entered the market earlier this decade. It is intended to shut off the urge to sleep, without the jitter, buzz, euphoria, crash, or potential for paranoid delusion of stimulants such as amphetamines, cocaine or even caffeine.

The FDA originally approved modafinil for narcoleptics who fall asleep frequently and uncontrollably. But this widely available prescription drug, with the trade name Provigil, immediately was tested on healthy young U.S. Army helicopter pilots. It allowed them to stay up safely for almost two days while remaining practically as focused, alert and capable of dealing with complex problems as the well rested. Then, after a good eight hours' sleep, it turned out they could get up and do it again for another 40 hours, before finally catching up on their sleep.

But it's the future of the third group -- the millions who, in the immortal words of Kiss, "wanna rock-and-roll all night and party every day" -- that holds the potential for changing society. Will people feel that they need to routinely control their sleep in order to be competitive? Will unenhanced people get fewer promotions and raises than their modified colleagues? Will this start an arms race over human consciousness?

Consider the case of a little boy born in Germany at the turn of this century. As reported in the New England Journal of Medicine last year, his doctors immediately noticed he had unusually large muscles bulging from his tiny arms and legs. By the time he was 4 1/2 , it was clear that he was extraordinarily strong. Most children his age can lift about one pound with each arm. He could hold a seven-pound dumbbell aloft with each outstretched hand. He is the first human confirmed to have a genetic variation that builds extraordinary muscles. If the effect can be duplicated, it could treat or cure muscle-wasting diseases.

Wyeth Pharmaceuticals is testing a drug designed to do just that as a treatment for the most common form of muscular dystrophy. Will athletes try to exploit the discovery to enhance their abilities?

"Athletes find a way of using just about anything," says Elizabeth M. McNally of the University of Chicago, who wrote an article accompanying the findings in the New England Journal of Medicine. "This, unfortunately, is no exception."

Views of the Future

Ray Kurzweil, an artificial-intelligence pioneer and winner of the National Medal of Technology, shrugs at the controversy over the use of stem cells from human embryos: "All the political energy that has gone into this issue -- it is not even slowing down the most narrow approach." It is simply being pursued outside the United States -- in China, Korea, Taiwan, Singapore, Scandinavia and Great Britain, where scientists will probably achieve success first, he notes.

In the next couple of decades, Kurzweil predicts, life expectancy will rise to at least 120 years. Most diseases will be prevented or reversed. Drugs will be individually tailored to a person's DNA. Robots smaller than blood cells -- nanobots, as they are called -- will be routinely injected by the millions into people's bloodstreams. They will be used primarily as diagnostic scouts and patrols, so if anything goes wrong in a person's body, it can be caught extremely early.

As James Watson, co-winner of the Nobel Prize for discovering the structure of DNA, famously put it: "No one really has the guts to say it, but if we could make better human beings by knowing how to add genes, why shouldn't we?"

Gregory Stock of UCLA sees this as the inevitable outcome of the decoding of the human genome. "We have spent billions to unravel our biology, not out of idle curiosity, but in the hope of bettering our lives," he said at a 2003 Yale bioethics conference. "We are not about to turn away from this."

Stock sees humanity embracing artificial chromosomes -- rudimentary versions of which already exist. Right now, the human body has 23 chromosome pairs, with the chromosomes numbered 1 through 46. Messing with them is tricky -- you never know when you're going to inadvertently step on unanticipated interactions. By adding a new chromosome pair (Nos. 47 and 48) to the embryo, however, the possibilities appear endless. Stock, in his book "Redesigning Humans: Our Inevitable Genetic Future," describes it as the safest way to substantially modify humans because, he says, it would minimize unintended consequences. On top of that, the chromosome insertion sites could have an off switch activated by an injection if we wanted to stop whatever we'd started. This would give future generations a chance to undo whatever we did.

Stock offers this analysis to counter the argument offered by some bioethicists that inheritable genetic line engineering should be unconditionally banned because future generations harmed by wrongful or unsuccessful modifications would have no control over the matter.

But the very idea of aspiring to such godlike powers is blasphemous to some. "Genetic engineering," writes Michael J. Sandel, a professor of political philosophy at Harvard, is "the ultimate expression of our resolve to see ourselves astride the world, the masters of our nature. But the promise of mastery is flawed. It threatens to banish our appreciation of life as a gift, and to leave us with nothing to affirm or behold outside our own will."

Stock rejects this view. "We should not just accept but embrace the new technologies, because they're filled with promise," he says. Within a few years, he writes, "traditional reproduction may begin to seem antiquated, if not downright irresponsible." His projections, he asserts, are not at all out of touch with reality.

Adapted from the book "Radical Evolution: The Promise and Peril of Enhancing Our Minds, Our Bodies -- and What It Means to Be Human" by Joel Garreau, to be published May 17 by Doubleday, a division of Random House Inc. © 2005 by Joel Garreau. Reprinted with permission.


<          3

© 2005 The Washington Post Company