Correction to This Article
A June 26 Outlook article, "Censoring Science Won't Make Us Any Safer," incorrectly described the origins of a specific statement that professor Lawrence Wein has made about the vulnerability of the U.S. milk supply. Wein's contention that a terrorist could obtain botulinum toxin on the black market appeared in a New York Times op-ed article that he wrote, not in an unpublished article on the vulnerability issue that he had co-authored earlier for the National Academy of Sciences' journal.

Censoring Science Won't Make Us Any Safer

By Laura K. Donohue
Sunday, June 26, 2005

In 1920, the Irish Republican Army reportedly considered a terrifying new weapon: typhoid-contaminated milk. Reading from an IRA memo he claimed had been captured in a recent raid, Sir Hamar Greenwood described to Parliament the ease with which "fresh and virulent cultures" could be obtained and introduced into milk served to British soldiers. Although the plot would only target the military, the memo expressed concern that the disease might spread to the general population.

Although the IRA never used this weapon, the incident illustrates that poisoning a nation's milk supply with biological agents hardly ranks as a new concept. Yet just two weeks ago, the National Academy of Sciences' journal suspended publication of an article analyzing the vulnerability of the U.S. milk supply to botulinum toxin, because the Department of Health and Human Services warned that information in the article provided a "road map for terrorists."

That approach may sound reasonable, but the effort to suppress scientific information reflects a dangerously outdated attitude. Today, information relating to microbiology is widely and instantly available, from the Internet to high school textbooks to doctoral theses. Our best defense against those who would use it as a weapon is to ensure that our own scientists have better information. That means encouraging publication.

The article in question, written by Stanford University professor Lawrence Wein and graduate student Yifan Liu, describes a theoretical terrorist who obtains a few grams of botulinum toxin on the black market and pours it into an unlocked milk tank. Transferred to giant dairy silos, the toxin contaminates a much larger supply. Because even a millionth of a gram may be enough to kill an adult, hundreds of thousands of people die. (Wein summarized the article in an op-ed he wrote for the New York Times.) The scenario is frightening, and it is meant to be -- the authors want the dairy industry and its federal regulators to take defensive action.

The national academy's suspension of the article reflects an increasing concern that publication of sensitive data can provide terrorists with a how-to manual, but it also brings to the fore an increasing anxiety in the scientific community that curbing the dissemination of research may impair our ability to counter biological threats. This dilemma reached national prominence in fall 2001, when 9/11 and the anthrax mailings drew attention to another controversial article. This one came from a team of Australian scientists.

Approximately every four years, Australia suffers a mouse infestation. In 1998, scientists in Canberra began examining the feasibility of using a highly contagious disease, mousepox, to alter the rodents' ability to reproduce. Their experiments yielded surprising results. Researchers working with mice naturally resistant to the disease found that combining a gene from the rodent's immune system (interleukin-4) with the pox virus and inserting the pathogen into the animals killed them -- all of them. Plus 60 percent of the mice not naturally resistant who had been vaccinated against mousepox.

In February 2001 the American SocietyforMicrobiologists' (ASM) Journal of Virology reported the findings. Alarm ensued. The mousepox virus is closely related to smallpox -- one of the most dangerous pathogens known to humans. And the rudimentary nature of the experiment demonstrated how even basic, inexpensive microbiology can yield devastating results.

When the anthrax attacks burst into the news seven months later, the mousepox case became a lightning rod for deep-seated fears about biological weapons. The Economist reported rumors about the White House pressuring American microbiology journals to restrict publication of similar pieces. Samuel Kaplan, chair of the ASM publications board, convened a meeting of the editors in chief of the ASM's nine primary journals and two review journals. Hoping to head off government censorship, the organization -- while affirming its earlier decision -- ordered its peer reviewers to take national security and the society's code of ethics into account.

Not only publications came under pressure, but research itself. In spring 2002 the newly formed Department of Homeland Security developed an information-security policy to prevent certain foreign nationals from gaining access to a range of experimental data. New federal regulations required that particular universities and laboratories submit to unannounced inspections, register their supplies and obtain security clearances. Legislation required that all genetic engineering experiments be cleared by the government.

On the mousepox front, however, important developments were transpiring. Because the Australian research had entered the public domain, scientists around the world began working on the problem. In November 2003, St. Louis University announced an effective medical defense against a pathogen similar to -- but even more deadly than -- the one created in Australia. This result would undoubtedly not have been achieved, or at least not as quickly, without the attention drawn by the ASM article.

The dissemination of nuclear technology presents an obvious comparison. The 1946 Atomic Energy Act classifies nuclear information "from birth." Strong arguments can be made in favor of such restrictions: The science involved in the construction of the bomb was complex and its application primarily limited to weapons. A short-term monopoly was possible. Secrecy bought the United States time to establish an international nonproliferation regime. And little public good would have been achieved by making the information widely available.

Biological information and the issues surrounding it are different. It is not possible to establish even a limited monopoly over microbiology. The field is too fundamental to the improvement of global public health, and too central to the development of important industries such as pharmaceuticals and plastics, to be isolated. Moreover, the list of diseases that pose a threat ranges from high-end bugs, like smallpox, to common viruses, such as influenza. Where does one draw the line for national security?


CONTINUED     1        >

© 2005 The Washington Post Company