Green Lantern: Geothermal power offers hope for a clean energy future

By Nina Shen Rastogi
Monday, November 8, 2010; 3:04 PM

I recently took my family to Yellowstone, and the shooting geysers and super-volcano got me wondering: Can't we tap all that energy to produce electricity?

Theoretically, we could. Super-hot water is the primary ingredient in geothermal energy production, and the Earth beneath Yellowstone has it in spades, thanks to a massive, shallow body of magma and plenty of snow and rain. However, the Geothermal Steam Act of 1970 puts national park lands off-limits to geothermal energy developers.

Even if it weren't prohibited, there are compelling reasons to leave Yellowstone alone - reasons like its famous geysers, which could be damaged or even quenched by geothermal energy development in and around the park. (Areas outside the park's borders, however, aren't protected as strongly.)

Yellowstone contains half of the world's remaining geysers, making them a precious scientific commodity. The park's hydrothermal features host one of the planet's greatest concentrations of extremophiles, organisms that live in environments at the extremes of heat, acidity, pressure and so on. An estimated 99 percent of Yellowstone's extremophiles remain undiscovered, but the ones we've found have been quite useful - one bacterium, for example, made modern DNA analysis possible, while others help scientists theorize about life on other planets.

While drilling wells in Yellowstone might not be a great idea, geothermal energy in general is very promising. According to recent life-cycle analyses by Argonne National Laboratory, geothermal power plants emit 18.7 to 103 grams of CO2-equivalent, a greenhouse gas measurement, per kilowatt-hour. These are polite little hiccups compared with the 1,234.9 grams belched out by coal plants or the 487 grams emitted by natural gas plants.

Unlike conventional coal-fired plants, geothermal plants emit very little sulfur dioxide and no nitrogen oxides, which are the precursors of acid rain. And unlike wind or solar power, geothermal power doesn't fluctuate with the weather. Last year, the United States' 77 geothermal power plants produced 15.2 billion kilowatt-hours of electricity, or about 0.4 percent of the U.S. total - more than any other nation in the world.

But as with any big industrial use, geothermal energy production also carries some environmental risks. The biggest issues have to do with water. Brackish waters drawn from deep underground are sometimes laced with toxic substances such as mercury, so power producers must be very careful with how they store and dispose of it. To cool their working fluid, some geothermal power plants withdraw large amounts of surface water. In areas where fresh water is scarce, these plants may compete with farms and homes that need water for irrigation, bathing and the like. But that's a problem for other kinds of power plants, as well.

The potential for geothermal projects to cause earthquakes has received a lot of attention in recent years. Most of the concern has been focused on projects known as enhanced geothermal systems, or EGS, that are being developed in various countries.

There are plenty of underground zones that get scorching hot but remain dry because the rock there is so dense. Without water to carry that thermal energy to the Earth's surface, you can't generate electricity. (Not yet, at least.) In EGS applications, high-pressure water is injected into those impermeable, rocky areas to create a network of small fractures.

Pumping surface water into the now-porous rock creates a brand- new hydrothermal reservoir. That fracturing process produces micro-earthquakes, small tremors that can be detected with a seismometer but generally aren't felt at the Earth's surface. To avoid creating more-damaging earthquakes, EGS projects must steer clear of active fault lines and monitor seismic activity very closely.

Conventional geothermal plants have also been associated with earthquakes, in part because they tend to be located near active tectonic regions, where hydrothermal reservoirs are usually found. Additional tremors may arise, however, when extracting or injecting steam and water causes changes in pressure or temperature underground.

If tapped, Yellowstone would probably be the world's largest geothermal production field. But even without using the park, underground heat can still play a big role in America's energy future. According to a 2008 assessment by the U.S. Geological Survey, we could increase our geothermal power generation by 260 percent just by tapping the hot water and steam reservoirs we've already discovered.

When you include all the undiscovered reservoirs that the USGS estimates are out there, or all the new reservoirs that could be created using EGS technology, the power potential skyrockets.

All told, we could theoretically produce nearly 4.9 million gigawatt-hours of electricity annually - more than was produced last year from all the country's energy sources combined. Of course, it's unlikely that all that power capacity would be online at any one time: For one thing, a tapped reservoir will cool over a period of several decades, and must be left fallow for another several decades to recover its heat. Still, those numbers indicate that we can leave Old Faithful to the tourists without compromising our clean energy future.

Is there an environmental quandary that's been keeping you up at night? Send it to

© 2010 The Washington Post Company