The Washington PostDemocracy Dies in Darkness

Martinus Veltman, Nobel laureate who helped reveal workings of universe, dies at 89

Martinus Veltman enjoys champagne as he is congratulated by phone for receiving the Nobel Prize in physics in 1999. (Raymond Rutting/AFP/Getty Images)

Martinus J.G. Veltman, a Dutch theoretical physicist who won the Nobel Prize for major contributions to the standard model of particle physics, which explains the structure and workings of the universe at its most fundamental level, died Jan. 4 at his home in the Netherlands. He was 89.

His death, in Bilthoven, was confirmed on the Nobel Prize website, but no cause was released. He taught for years in his native land and was also a professor emeritus at the University of Michigan.

Dr. Veltman made his most significant contribution in helping clear away mathematical roadblocks to the full flowering of the standard model. His mathematical contributions have been regarded as pointing toward and making possible major and well-publicized advances in physics.

These include discovery of the top quark, regarded as one of the fundamental building blocks of matter, and of the Higgs boson, a subatomic particle sometimes viewed as the key to the structure and even existence of the universe.

Dr. Veltman shared the Nobel in physics with another Dutch theoretical physicist, Gerardus ’t Hooft, then at Utrecht University in the Netherlands. ’T Hooft studied and did his research under Dr. Veltman at Utrecht.

“Without Veltman’s and ’t Hooft’s work, discovery of the top quark would have been impossible,” Homer A. Neal, a physicist at the University of Michigan, said at the time the Nobel was awarded in 1999.

“While the concepts behind the Standard Model — the theory that describes the elementary particles and forces in the universe — were well-known in the physics community, their work gave us a way to apply the theory to real-world events,” Neal said. “It was of monumental importance to advances of modern physics.”

Among the specific developments with which Dr. Veltman was credited was an early computer program that helped bridge what had been a daunting and discouraging roadblock in efforts to build the standard model. The obstruction had blocked the path between the concepts underlying the standard model and the ability to use the model to describe existing particles and to predict the existence of new ones.

Known as Schoonschip, the program brought him recognition for enabling computers to operate on the symbols of mathematics, just as they were becoming known for manipulating numerical data.

Its name — which in Dutch means or suggests a taut, clean ship — implies its usefulness in handling the profusion of terms that bogged down efforts to make calculations on the basis of new theories that tried to blend the understandings of classical and quantum physics.

’T Hooft, Dr. Veltman’s former graduate student, expressed admiration for his professor’s work with computers in a relatively primitive age, when programs were punched mechanically into paper cards.

The effort, as ’t Hooft described it, was a “heroic one.”

Although Dr. Veltman immersed himself for a time in the intricacies of computers, they were for him a means to an end, a tool in the development of theoretical physics. The goal was to probe the mysteries of the universe. “There is nothing more exciting than discovering how nature works,” he said.

The Nobel committee cited him and ’t Hooft for “elucidating the quantum structure of electroweak interactions in physics.”

What this meant, among other things, was devising mathematical methods that made fully possible and practical the unification of quantum theory with two of the four ­forces of the universe: electromagnetism and the “weak force” that acts between nuclear particles. (The other two forces are the strong nuclear force and gravitation.)

With their computer work, the two 1999 prize winners found ways to develop a mathematical system for unifying the forces­ that avoided the previous pitfalls. Importantly, it made calculation possible without the values of important terms departing from reality and showing up as infinite. Among physicists, clearing away these troublesome infinities is known as renormalization and is basic in many important areas of research.

In a statement issued at the time the prize was awarded, the Nobel organization said Dr. Veltman “believed firmly in the possibility of finding a way of renormalizing the theory and his computer program was the cornerstone of the comprehensive work of testing different ideas.”

Martinus Justinus Godefriedus Veltman, known as “Tini,” was born June 27, 1931, in Waalwijk, Netherlands, where his father headed a primary school. During World War II, he lived under German occupation until the liberation of his part of the country by the Allies starting in late 1944.

He began the study of mathematics and physics at Utrecht University in 1948 and, after receiving a master’s degree and then fulfilling his military obligation, returned to Utrecht, where he received his PhD in 1963. He later became a member of the faculty, where he supervised the work of ’t Hooft.

During a long American interlude, he served on the physics faculty at the University of Michigan from 1981 to 1997.

Survivors include his wife, Anneke; three children; and three grandchildren.

Although the Higgs boson flowed from the standard model, it was not until 2012 that CERN, the European Organization for Nuclear Research, using a specially built high-energy particle collider, demonstrated that the long-sought Higgs boson (named after British physicist Peter Higgs) actually existed.

By then, Dr. Veltman said in a wry interview that he had become something of a doubter.

“I just look at a situation and I wonder: what is the evidence?” he explained to Nature magazine in 2012. “The hunt for the Higgs started in the early 1970s, and every year there would be another joker predicting that it is just around the corner. I concluded that the chances of it not being there were higher.”

However, he said good-humoredly that he was grateful for being tipped off in an advance phone call about the finding of the Higgs boson. He was about to speak at a major physics conference and said the call was “just to prevent me saying something stupid . . . like ‘the Higgs doesn’t exist’!”

Read more Washington Post obituaries