Students learning to code in Greennville, N.C.  (AP Photo/The Daily Reflector, Rhett Butler)

Americans have long been in love with the notion that technology’s powers are, as Stanford University’s Larry Cuban has written, “the elixir of everlasting improvement in all things personal and institutional.” This notion is strong among some school reformers who believe that high-tech is what will cure most of what ails public schools.

Here is a new piece debunking that notion by Cuban, who was a high school social studies teacher for 14 years and a district superintendent (seven years in Arlington, VA). He is now professor emeritus of education at Stanford, where he has taught for more than 20 years. His most recent book is “Inside the Black Box of Classroom Practice: Change without Reform in American Education.” In 2016 he is publishing “Teaching History Then and Now: A Story of Stability and Change in Schools,” a study of how he taught history over 50 years ago in Cleveland and Washington D.C. schools, and how it was taught in 2013-14  in the very same schools. This post appeared on his blog and I am republishing it with permission.

 

By Larry Cuban

I watched the World Series and saw both New York Mets and Kansas City Royal fans wearing hats, shirts, and displaying signs designed to get their teams to win. I saw similar clothes and painted faces on soccer fans during the World Cup. The belief, the intuition that these caps and jerseys would get their teams to win borders on superstition. And most fans would agree. Yet, yet, yet just maybe wearing the stuff, painting the face, and holding signs aloft would be just the thing that would snatch defeat from the other team. As a recent op-ed put it: fans “have an powerful intuition and, despite its utter implausibility, they can’t just shake it.”  The contradiction is aptly caught in the title of the opinion piece: “Believing What You Don’t Believe.”

This is no rant, however, about how emotion trumps reason or how thinking thoughts (or fans waving signs) will produce the desired outcome. Nor will this post elaborate how our cognitive “slow” and “fast” thinking ways do not always work in sync or that our “slow thinking” will correct the impulsive move where we have “trusted our gut.”

In this post, I  look at how local, state, and federal policymakers, high-tech entrepreneurs, and CEOs of major corporations engage in “magical thinking.” Inhabiting a technocratic mind-set, these leaders who rely on experts  believe that more and more use of high-tech tools will provide the adrenaline shot for U.S. schools to match international rivals’ test scores and lead ultimately to a larger share of the global market for U.S. goods and services.

I offer two examples of high-tech industry and civic leader aspirations to link all public schooling to the job market and larger economy that highlight this phenomenon: MOOCs and every child learning to code and taking computer science courses.

MOOCs

Massive Open Online Courses burst on the scene three years ago with claims that such courses offered free to anyone on this planet with an Internet connection will–here come the key words–“revolutionize” and “transform” higher education.  John Hennessey, president of Stanford University, said a “tsumani is coming.” Equity and excellence, values that both liberals and conservatives cherish, will be fulfilled. Nothing of the sort happened (see here, here, and here). In the Gartner “hype” cycle, MOOCs are buried in the “slough of disillusionment.” All within three years. High-tech hyperactivity has compressed time into bytes.

 

Coding and Computer Science

Young children learning to code in elementary schools while their older brothers and sisters take computer science in high school is currently in the “Peak of Inflated Expectations” in the above hype cycle. Consider that the British government has gone even further than the mania gripping the United States by mandating in its national curriculum that all children learn to code and take computer science in their secondary schools (see here and here).

The United Kingdom “computing” curriculum is, of course, a national experiment in further vocationalizing public schooling to tie education to the economy. With no national curriculum in the United States (the Common Core State Standards isn’t actually a curriculum) the surge of interest in coding (e.g., Year of the Code, next month’s celebratory week of Computer Science, coding boot camps), much of it financed by tech industry giants, has seized the spotlight of attention.

That attention has shifted from every student having access to computers in school – close to being a fact in the United States – to using these devices in classroom lessons. From kindergartners getting lessons on coding to online courses to blended learning to flipped classrooms, the mania for computers in schools has corralled both public and private funding as the high-tech solution to students becoming equipped with 21st century skills.

To be clear, I do not refer to those tens of thousands of teachers and principals who, with care and thoughtfulness, have slowly integrated their devices and software into lessons to teach content, skills, and creativity. They keep their heads down and often escape the mania I refer to above.

So is there anything intrinsically wrong with pushing coding and computer science in U.S. schools? After all, both are being sold to school boards and parents as ways of teaching logic, thinking skills, as well as preparation for future jobs.  So on the surface, nothing appears to be unseemly. Underneath the surface, however, are two matters that often go unnoted by advocates of coding and computer science.

First, the original trio of goals for computers entering schools and classrooms since the early 1980s consisted of improving academic achievement of students, altering the traditional patterns of teaching and learning, and preparing the next generation for the labor market. Nowadays, few champions of computers in schools even mention academic achievement or talk of “transforming” teaching and learning through laptops and tablets. But the vocational goal does remain in the current joy for teaching children and youth to write code and create algorithms.

Second is the historic pattern of focusing on public schools as a national problem to be solved (think segregated schools, national defense, drug and alcohol addictions as problems that schools could “solve”) and seeking another “technical” solution to its ills. In this instance, injecting coding and computer science, online instruction into K-16 schooling. Such a technocratic strategy aims to alter traditional curriculum and lessons for one over-riding purpose to get ready for an ever-changing, fast-moving job market and economy.

So here again within a few years, “magical thinking” about the power of technical products to tie schools to the economy via coding and computer science has arisen even in the face of the dramatic shift in goals for these high-tech products over the past three decades and the failure of MOOCs to gain traction in higher education since 2012.

The feel-good attitude of World Series and World Cup fans who wear jerseys and hats believing that to do so will help their teams win is alive and well in the high-tech community.