There’s plenty of food the in the world. The issue is getting it to the places in need. (Mark Elias/Bloomberg)

In 2013, I made my first trip to Ethiopia. Knowing a bit about the country’s economic circumstances, I fully expected the grim poverty that I’d later encounter. After all, like millions of Americans, I watched the devastating famine there unfold on television in the 1980s.

At the same time, Ethiopia has made great strides since then. Ethiopia halved the number of its undernourished people from 75 percent to 35 percent in two decades, according to the United Nations. Still, that 35 percent is considerable – the U.N.’s World Food Programme estimates that 3.2 million Ethiopians need food relief assistance.

So imagine my surprise when I entered a restroom in a small town outside Addis, the capital, and found sensorized urinals – the kind that self-flush. I don’t normally notice urinals, but in Ethiopia, where electricity and indoor plumbing are unreliable at best, sensorized urinals catch your attention. To find something as relatively advanced as a sensorized machine in a small Ethiopian town doesn’t necessarily say much about the country; but it says a lot about the machine.

In particular, it illustrates the potential of sensors and how they could hold the key to significantly reducing the world’s hunger problem. Sensors are everywhere and in everything, at least in developed nations such as the United States. They’ve revolutionized our mobile phones, and are now powering the next wave of wearable tech devices. Sensors are the reason the automotive industry is poised to deliver a driverless car.

The best thing about sensors, aside from their potential? They’re dirt cheap. The average smartphone holds five to seven sensors that cost about $5 combined. In 2007, an accelerometer, which comes standard in all smartphones today, cost $7 — now it costs less than 50 cents. The steep price decline, which has been in place since the early 1990s, is a function of strong competition in the smartphone arena and the growing number of applications using sensor technology. But nothing mandates that sensors are for smartphones only.

Which brings us back to Ethiopia. Now that you see how cheap sensors are today, the notion that a small, dusty town in Ethiopia can afford a sensorized urinal doesn’t seem all that remarkable. But let’s take this one step further. Sensorized devices are multiplying across every sector of the economy. Heavy industry uses sensors to increase productivity. Airplanes employ sensors in their “fly-by-wire” systems. Physicians can prescribe digestible sensors to monitor and wirelessly transmit biometric data.

According to the Digital Universe report from the International Data Corporation, the total number of “connectable things” – everyday objects that can be linked to the Internet – in the world is around 200 billion. Of those, about 20 billion are actually wired and talking to the Internet right now. They’re able to do so through a network of roughly 50 billion sensors that track, monitor and feed data to those connected devices. And the IDC estimates that by 2020, the number of connected things will increase by 50 percent to 30 billion, while the network of sensors will number in the trillions.

So, what does this have to do with solving the global food crisis? There’s enough food in the world to feed every person on the earth, yet through a combination of inefficiencies, supply-chain obstacles and oppressive government regulation, hundreds of millions of people are undernourished. Indeed, many food shortages arise because of misallocation of information. Suppliers of food are unaware of shortages and unaware of market prices. I’ve heard stories of food rotting on African farms only miles away from desolate starvation.

Equipping food-supply material such as storage containers, warehouses and shelves with sensors allows us to know instantly the moment a shortage exists. And I mean instantly in the literal sense. With sensors, we don’t need to wait for a person to count hundreds of containers to realize that there won’t be enough food for the community –a time-consuming process that too often doesn’t happen anyway. Sensors help remove those layers of inefficiency, shortening data’s transmission chain, skipping potential inhibitors and triggering faster response times.

Let’s take it one step further. The rise of commercial drones removes perhaps the biggest obstacle for food supply efforts – the need to take food from point A to point B over treacherous roads. Drones are possible only because of sensors. While we are farther away from seeing the “Drone Delivery Age” than we are from equipping storage facilities with sensors, we’re closer than you might think.

Of course, it’s going to take time for this technology to filter down to the places that need it most – places such as Ethiopia and other impoverished nations. Yet when I worry that we aren’t moving fast enough, I remember that sensorized urinal in Ethiopia. The sensors are coming, and they have the power to solve some of our greatest humanitarian crises.

DuBravac is the chief economist at the Consumer Electronics Association and the author of the book, “Digital Destiny: How the New Age of Data Will Transform the Way We Work, Live, and Communicate” (Regnery, 2015). Follow him on Twitter