Intel co-founder Gordon Moore looks back over the last 50 years of change enabled by the law he identified. (Intel Newsroom)

Moore’s Law, which states that the number of transistors per integrated circuit will double approximately every 18-24 months, has become the defining metaphor of the modern technological age. As a result, the logarithmic graph plotting the number of transistors per integrated circuit over time has become instantly recognizable ever since it first appeared on April 19, 1965.

A copy of the 1965 Electronics Magazine article in which Moore made a prediction about the semiconductor industry that has become the stuff of legend. (Intel Newsroom)

In commemoration of the 50th anniversary of the publication of Gordon Moore’s seminal piece “Cramming More Components Onto Integrated Circuits,” we’ve assembled a series of photos that show – not tell – what Moore’s Law has changed the way we think about the astounding rate of change in the technology sector over the past 50 years.

[1] The increase in computing power first predicted by Gordon Moore in 1965 means that a single device – the smartphone – has become as powerful as an entire collection of devices and gadgets just a generation ago.

[2] This exponential growth of computing power over time means that a single computer may one day have the supercomputing power of a single human brain, sometime within our lifetime. That sets up for the Singularity. By 2045, a single computer may have the processing capability of all human brains combined.

[3] Across the entire technological spectrum, we’ve witnessed the incredible shrinking in the size of common technology products over the past 50 years made possible by cramming more transistors onto a single integrated circuit.

[4] The computing power that once fit inside an entire room now fits in the palm of your hand. According to Peter Diamandis, author of “Bold” and “Abundance: The Future Is Better Than You Think,” the average smartphone now boasts close to $1 million worth of apps.

[5] Moore’s Law also helps us to understand the remarkable shrinking in the price and size of storage over the past 50 years.

[6] This combination of increasing power and shrinking size has improved the performance of nearly every sphere of human endeavor:

[7] Including the ability to crank out significantly better video games.

[8] Given the staggering rate of technological change over the past 50 years, there has been an attempt to put this pace of innovation in terms understandable for the non-technologist. As Intel pointed out at the beginning of 2014, if human population followed the same growth trajectory as Moore’s Law, it would mean that the population of the Earth would be 1 trillion by 2029.

[9] Another way of thinking about this is by thinking of transistors as if they were people crammed into a music hall. In 1970, if an event at that concert hall were attended by 2,300 people, 40 years later, you would now have 1.3 billion people crammed into that same concert hall.

[10] Ultimately, we may not be able to cram any more transistors onto a single circuit, at which point Moore’s Law would suggest that any improvements in computing power would have to come at the atomic level. Transistors simply couldn’t get any smaller.