The Washington PostDemocracy Dies in Darkness

Hibernating fat bears are complex. They may hold lessons for human health.

Hibernating bears stay healthy despite being very fat and sedentary. New research is focusing on what humans can learn from them.

(Washington Post illustration/iStock)

Fat bear week starts today, that glorious autumn tradition when anyone with an internet connection can vote for the plumpest brown bear in Alaska’s Katmai National Park. Last year, more than 800,000 people weighed in during Fat Bear Week, crowning Otis, an enormous, dimpled ursine, Fat Bear champion for the fourth time.

But for many scientists, the true fascination of Fat Bear Week involves what happens next, when the now beachball-shaped bruins, carrying about 40 percent body fat, lumber into their dens and start hibernating. During hibernation, they remain healthy under conditions that would weaken and sicken mere humans. The bears emerge months later, lean, strong and barely affected by their months of starvation and inactivity.

Fat Bear Week has arrived. Meet the chunky contenders.

Until recently, researchers could not explain how. But several fascinating new molecular studies suggest hibernation remodels bear metabolisms and gene activity in unique and dramatic ways that could have relevance for people. The fat bears can advance our understanding of diabetes, muscle atrophy, inactivity and the ingenuity of evolution.

The remarkable hibernating bear

Superficially, hibernating bears seem passive and inert. For five months or more, they do not eat, drink, urinate, defecate or move, except occasionally to turn over or shiver. Their metabolisms drop by about 75 percent. Hearts beat and lungs inflate only a few times a minute. Kidneys shut down. The bears grow profoundly insulin resistant.

If this were us, we would shed much of our muscle mass because of inactivity and probably develop diabetes, heart disease, kidney failure, frailty and other ills.

But the bears maintain their muscle and rapidly reestablish normal, healthy insulin sensitivity and organ function after hibernation.

“Hibernation is so much more complicated and nuanced than we once thought,” said Joanna Kelley, a biology professor at Washington State University, who studies grizzly bears at the WSU Bear Center.

That bears can reverse their insulin resistance, hold onto their muscle and gain and drop such massive amounts of weight season after season with no obvious ill effects, “is pretty remarkable,” said Heiko Jansen, a professor of integrative physiology and neuroscience at Washington State University, who is also affiliated with the bear center.

To learn how the bears manage this, he, Kelley and other researchers at Washington State University and elsewhere have been drawing blood and taking minute tissue samples from bears throughout the year. (The resident WSU animals are trained and cooperative and do not need to be repeatedly anesthetized for these procedures, Jansen said.)

What is Fat Bear Week? Everything to know about the big, beefy event.

Bear fat changes for the season

By comparing the samples, they concluded hibernation is biologically uncanny but hardly quiet. In a 2019 study, the WSU scientists and others found more than 10,000 genes in bears that work differently during hibernation vs. in autumn or spring. Many involve insulin activity and energy expenditure and most occur in the animals’ fat, which becomes quite insulin resistant during hibernation and robustly insulin sensitive immediately afterward.

Digging deeper into that process for a new study, published in September in iScience, they bathed fat cells drawn from hibernating and active bears with blood serum taken during the opposing time and watched the fat switch seasons. Fat from hibernating bears became insulin sensitive and genetically similar to fat from the active season and vice versa.

Perhaps most compelling, they also identified and cross-matched hundreds of proteins in the animals’ blood and found eight that differed substantially in abundance from one season to the next. These eight proteins seemed to be driving most of the genetic and metabolic changes in the fat.

Potentially, these same eight proteins, which also appear in human blood, might at some point be harnessed pharmaceutically to improve insulin sensitivity or treat diabetes and other metabolic disorders in people, Kelley said. But that possibility lies far in the future and requires vastly more research with bears and us (although perhaps not in close proximity).

The secret of bear muscles

Scientists likewise have been delving into the muscles of hibernating bears. In humans, prolonged inactivity triggers the release of multiple biochemicals that break down and reduce muscle, presumably because our bodies consider unused tissue dispensable. But bears hold on to their muscle through months of not moving.

How fat are the bears of fat bear week?

Their secret seems to lie, again, in substances flowing through their blood. In a study published earlier this year, researchers in Japan soaked human muscle cells with blood serum from either hibernating or active Japanese black bears, or — as a control — from horses, and tracked the cells’ responses.

The serum from active bears and horses had little effect. But human muscle cells marinating in hibernators’ blood produced far less of a substance known to break down muscle and far more of other substances that sustain muscle growth. The cells also wound up with higher overall amounts of protein, the building block of tissue, compared with levels before the serum.

These processes should keep the muscles in a fine-tuned balance between breakdown and rebuilding, said Mitsunori Miyazaki, a professor of biomedical and health sciences at Hiroshima University, who led the new study. In that case, muscles, even if inactive, would not grow but also would not shrink.

The ultimate aim of this research, Miyazaki said, is to isolate and refine all of the substances and processes in hibernating bears’ blood and elsewhere in their bodies that protect them from muscle wasting, with the hope that these same elements might treat atrophy from bed rest or aging in people.

“There is probably no better way to maintain a healthy lifestyle than through physical exercise,” he said, but for people who cannot be active, for whatever reason, the internal operations of slumbering bears might someday provide respite from frailty.

“What’s so interesting about this work is that evolution already figured out how to handle” the problems of reversing insulin resistance and sparing nonworking muscles during hibernation, Jansen said.

Now he and other bear scientists just need to continue reverse-engineering that evolution, he said, to help us better understand and eventually benefit from the resilience, as well as the charisma, of fat bears.

Sign up for the Well+Being newsletter, your source of expert advice and simple tips to help you live well every day


A previous version of this article incorrectly stated that Otis had won the Fat Bear championship three times. Otis has won it four times. This version has been corrected.

Do you have a fitness question? Email and we may answer your question in a future column.

Read more from Well+Being

Well+Being shares news and advice for living well every day. Sign up for our newsletter to get tips directly in your inbox.

Body: What’s the difference between RSV, the flu and covid-19? You don’t have to worry about your stomach exploding if you overeat. For some with ADHD, brown noise quiets the brain.

Life: The Well+Being gift guide has our picks for the body, mind, pets and more. These five tips from experts can help students take a mental health break from college. What to feed and not feed pets from holiday dishes.

Food: Diet changes can improve sleep apnea, even without weight loss. Fiber alters the microbiome and may boost cancer treatment. How to support your sober friends when everyone is drinking.

Fitness: Dogs and humans both can get dementia, and more walks can help. Pickleball is popular, but how much exercise are you really getting? This is the speedy scientific workout you can do almost anywhere.

Mind: Tips for parents to help teens struggling with mental health issues. Want to feel happier? Try snacking on joy. Three ways to fix sleep issues when nothing else works.